PET System Synchronization and Timing Resolution Using High-Speed Data Links

Research areas:
Authors:
Aliaga, R. J.; Monzo, J. M.; Spaggiari, M.; Ferrando, N.; Gadea, R.; Colom, R. J.
Year:
Type of Publication:
Journal:
Volume:
Number:
Pages:
Month:
ISSN:
2011
Article
IEEE Transactions on Nuclear Science
58
4
1596-1605
August
018--9499
Keywords:
Data acquisition, positron emission tomography , serial links , synchronization , timing resolution

 

Abstract:
Current PET systems with fully digital trigger rely on early digitization of detector signals and the use of digital processors, usually FPGAs, for recognition of valid gamma events on single detectors. Timestamps are assigned and later used for coincidence analysis. In order to maintain a decent timing resolution for events detected on different acquisition boards, it is necessary that local timestamps on different FPGAs be synchronized. Sub-nanosecond accuracy is mandatory if we want this effect to be negligible on overall timing resolution. This is usually achieved by connecting all boards to a common backplane with a precise clock delivery network; however, this approach forces a rigid structure on the whole PET system and may pose scalability problems. As an alternative, we propose a backplane-less PET system architecture in which DAQ boards are connected by single full-duplex high-speed data links. Data encoding with embedded clock is used to correct frequency differences between local oscillators. Timestamp synchronization between FPGAs with clock period resolution is maintained by means of data transfers in a way similar to the IEEE 1588 standard. Finer resolution is achieved by reflection of received clocks and phase difference measurement on the transmitter. It is crucial that data transceivers have very low latency uncertainty in order to achieve the desired timestamp accuracy; we discuss the availability of off-the-shelf hardware for these implementations.

Online version